Thursday, 4 July 2013

Prove the following by using the principle of mathematical induction for all n ∈ N


NCERT Solution For Class 11 Maths

Chapter -4 Mathematical Induction 

The Principle of Mathematical Induction

Suppose there is a given statement P(n) involving the natural number n such that
(i) The statement is true for n = 1, i.e., P(1) is true, and
(ii) If the statement is true for n = k (where k is some positive integer), then the statement is also true for n = k + 1, i.e., truth of P(k) implies the truth of P (k + 1).
Then, P(n) is true for all natural numbers n.

Exercise solutions 


Prove the following by using the principle of mathematical induction for all n ∈ N

  1. 1 + 3 + 32 + ... + 3n – 1 = (3n-1)/2 

    Answer 
    1 + 3 + 32 + ... + 3n – 1 = (3n-1)/2

    Prove the following by using the principle of mathematical induction for all n ∈ N

  2. 13 + 23 + 33 + … +n3 = {(n(n+1)/2}2

    Answer

    13 + 23 + 33 + … +n3 = {(n(n+1)/2}2

    Prove the following by using the principle of mathematical induction for all n ∈ N

     1 + 1/(1+2) + 1/(1+2+3)+ …+ 1/(1+2+3+….n)= 2n/(n+1) 

  3. Answer

     1 + 1/(1+2) + 1/(1+2+3)+ …+ 1/(1+2+3+….n)= 2n/(n+1)

    Prove the following by using the principle of mathematical induction for all n ∈ N

  4. 1.2.3 + 2.3.4 +…+ n(n+1) (n+2) = n ( n + 1) (n + 2) ( n + 3)/4 

    Answer

    1.2.3 + 2.3.4 +…+ n(n+1) (n+2) = n ( n + 1) (n + 2) ( n + 3)/4

    Prove the following by using the principle of mathematical induction for all n ∈ N

  5. 1.3 + 2.32 + 3.33 +…+ n.3n ={(2n − 1)3 n + 1 + 3}/4 

    Answer

    1.3 + 2.32 + 3.33 +…+ n.3n ={(2n − 1)3 n + 1 + 3}/4

    Prove the following by using the principle of mathematical induction for all n ∈ N

  6. 1.2 + 2.3 + 3.4 +…+ n.(n+1) = n ( n + 1) (n + 2)/3 

    Answer

    1.2 + 2.3 + 3.4 +…+ n.(n+1) = n ( n + 1) (n + 2)/3

    Prove the following by using the principle of mathematical induction for all n ∈ N

  7. 1.3 + 3.5 + 5.7 +…+ (2n–1) (2n+1) = n(4n2+6n -1)/3

    Answer

    1.3 + 3.5 + 5.7 +…+ (2n–1) (2n+1) = n(4n2+6n -1)/3

    Prove the following by using the principle of mathematical induction for all n ∈ N

  8. 1.2 + 2.22 + 3.22 + ...+n.2n = (n-1) 2n + 1 + 2. 

    Answer

    1.2 + 2.22 + 3.22 + ...+n.2n = (n-1) 2n + 1 + 2.

    Prove the following by using the principle of mathematical induction for all n ∈ N

  9. 1/2 +1/4 + 1/8 + … + 1/2n = 1 – 1/2n

    Answer 

    1/2 +1/4 + 1/8 + … + 1/2n = 1 – 1/2n

     

     

    Prove the following by using the principle of mathematical induction for all n ∈ N

  10. 1 /(2.5) + 1/ (5.8) + 1/(8 .11) + … + 1/{(3n-1)(3n+2)} = n/(6n+4) 

    Answer

    1 /(2.5) + 1/ (5.8) + 1/(8 .11) + … + 1/{(3n-1)(3n+2)} = n/(6n+4)


  11. 1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + … +1/{ n(n+1)(n+2)} = {n(n+3)}/{4(n+1)(n+2) 

    Answer

    1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + … +1/{ n(n+1)(n+2)} = {n(n+3)}/{4(n+1)(n+2)


  12. a + ar + ar2 +…+ arn-1 = a (rn − 1)/(r-1) 

    Answer

    a + ar + ar2 +…+ arn-1 = a (rn − 1)/(r-1)


  13. (1 + 3/1)(1 + 5/4)(1 + 7/9)…(1 + {(2n+1)/n2} = (n+1)2

    Answer 

    (1 + 3/1)(1 + 5/4)(1 + 7/9)…(1 + {(2n+1)/n2} = (n+1)2

     

  14. (1 + 1/1)(1 + 1/2)(1 + 1/3)…(1 + 1/n) = (n+1) 

    Answer

    (1 + 1/1)(1 + 1/2)(1 + 1/3)…(1 + 1/n) = (n+1)


  15. 12 + 32 + 52 + …+ (2n-1)2 = n (2 n − 1) (2 n + 1)/3 

    Answer

    12 + 32 + 52 + …+ (2n-1)2 = n (2 n − 1) (2 n + 1)/3


  16. 1/1.4 + 1/4.7+1/7.10 +… + 1/(3 n − 2)(3 n + 1) = n/(3 n + 1) 

    Answer

    1/1.4 + 1/4.7+1/7.10 +… + 1/(3 n − 2)(3 n + 1) = n/(3 n + 1)


  17. 1/3.5 + 1/5.7 + 1/7.9 + … + 1/(2 n + 1)(2 n + 3) = n/{3(2 n + 3)} 

    Answer

    1/3.5 + 1/5.7 + 1/7.9 + … + 1/(2 n + 1)(2 n + 3) = n/{3(2 n + 3)}


  18. 1 + 2 + 3 +…+ n < 1/8(2n + 1)2

    Answer

    1 + 2 + 3 +…+ n < 1/8(2n + 1)2.


  19. n (n + 1) (n + 5) is a multiple of 3. 

    Answer

    n (n + 1) (n + 5) is a multiple of 3.


  20. 102n - 1 + 1 is divisible by 11. 

    Answer

    n (n + 1) (n + 5) is a multiple of 3.


  21. x2n - y2n is divisible by x + y. 

    Answer

    x2n - y2n is divisible by x + y.


  22. 32n+2 - 8n - 9 is divisible by 8.

    Answer

    32n+2 - 8n - 9 is divisible by 8.

  23. 41n - 14n is a multiple of 27. 

    Answer

    41n - 14n is a multiple of 27.


  24. (2n + 7) < (n + 3)2

    Answer 

    (2n + 7) < (n + 3)2

     


2 comments:

Please g plus the post